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Aim and Backeround 

My purpose is to illustrate the 
usability of data supermatrices in 
more complex cases of least- squares 
estimation than I have been treating 
earlier. My motivation derives in 
part from inquiries occasioned by a 
paper that I presented at the August 
1968 meeting of the American Statisti- 
cal Association [1] and by another 
that appeared in the December 1968 
American Statistician [2]. An addi- 
tional stimulus has been provided by 
the development of a new computer 
program for regression analysis that 
takes account of the special features 
of least -squares supermatrices. The 
availability of such a program, dis- 
cussed in another paper presented at 
this meeting, should encourage the 
practical utilization of the super - 
matrix approach. 

In the classical least -squares 
cases, which involve unweighted or 
weighted observations (with no 
auxiliary conditions on the unknown 
parameters), the supermatrix method 
permits instant organization of the 
data, without any prior processing 
at all, into the algebraic equivalents 
of normal equations. If, in the 
weighted case, some prior arithmetic 
processing is allowed, an alternative 
supermatrix system may be written 
that is more compact but still alge- 
braically equivalent. As a rule, 
there is a tradeoff between the 
acceptable amount of prior comnutation 
and the acceptable siz @of the super - 
matrix system. 

It was for the relatively simple 
classical cases that the supermatrix 
approach was originally developed. 
In my earliest gropings toward this 
method (see my 1941 papers in the 
Journal of Statistical 
Association [3], L4 J), I used a 
weighted least- squares model and 
rectangular data matrices in studying 
the relationship between aggregative 
index numbers that embody different 
sets of weights. 

I have already demonstrated the 
extensibility of supermatrix design 
beyond the simplest and most familiar 
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situations. Thus, all or most prior 
arithmetic operations are avoidable 
(a) in the fitting of a straight line 
when all observations are subject to 
error (othogonal regression represents 
a special subcase)[2] and (b) in 
least- squares adjustment when the 
unknown constants are subject to side 
constraints [5]. 

Now, I consider additional, more 
difficult, instances. If these 
instances may be said to exemplify 
a common theme, it is "multiplicity." 
Thus, I say something below about the 
estimation of parameters for a function 
with multiple variables subject to 
error. I also offer two illustrations 
of multiple -step approximation; one 
is iterative in the sense of ultimate 
approach to least -squares estimation, 
and the other is iterative in the 
sense that the original linear model 
undergoes refinement by the addition 
of parameters and observations. 
Finally, I make some remarks on models 
involving multiple equations subject 
to disturbance. 

Before proceeding with the dis- 
cussion of new cases, I want to com- 
ment further on least- squares super - 
matrix systems. All of these have 
the general form Fg h. Here, F is 
a square design matrix -- really, a 
supermatrix -- containing unprocessed 
observations on one or more regressors 
and providing coefficients for individ- 
ual error terms. These coefficients 
state assumptions regarding the 
combination of errors. The design 
matrix may also include, if the prob- 
lem requires, assumptions relating to 
additional Lagrangian terms. The 
unknown constants, the (usually) 
unknown observational errors (really, 
"residuals "), and the unknown Lagran- 
gian multipliers (if required) are 
incorporated in a supervector, g. 
Another supervector, h, (usually) 
shows the observations on the depen- 
dent variable and the aggregate or 
summary conditions imposed on the 
errors and on the Lagrangian terms 
(the aggregates typically are zero). 

F, g, and h have well- defined 
structures. That is, they are parti- 
tionable in rather obvious ways. The 
elements they contain are organized 
in characteristic "packages," according 
to the nature of the adjustment problem 
to be solved. Since these packages, 



moreover, enter discernibly into 
simultaneous submatrix equations, the 
supermatrix system may be conceived 
as the result of a "stacking" proced- 
ure [5]. 

One of the ways of exhibiting 
the structure of the supermatrix 
system is to cast it into this form: 

[P tr 
(F g = h) 

Here, 0 is a block of zeros; I stands 
for one or more (diagonal) identity 
matrices; P shows the observed values 
of the independent variables or 
regressors; Q gives the coefficients 
of the individual error terms 
(residuals); d represents a subvector 
of unknown parameters; r is the sub - 
vector of unknown errors; and Y 
typically refers to observed (some- 
times, assumed or computed) values 
of the dependent variable. When the 
observations on the dependent 
independent variables are subject to 
error, the elements of r may be 
composite. In general, Qr = O 
amounts to a simple direct statement 
of the normal equations in terms of 
the errors (i.e., residuals); and 
Pd + Ir = Y (strictly, an identity 
rather than an equation) sets out the 
observed data in the form of the 
function, the prototype relationships, 
that is to be estimated. 

In my first paragraph, I men- 
tioned that another paper being 
presented at this ASA meeting deals 
with the programming of supermatrix 
systems (in FORTRAN) for efficient 
computer solution. My collaborator 
is Mr. Mac Shaibe, of the U.S. Bureau 
of Labor Statistics. As a result of 
his efforts, I expect supermatrix 
regression, which is not just a 
curious technical toy, to become 
more widely recognized as a poten- 
tially useful tool. 

Multiple Variables Subject to Error 

The multivariate case in which 
all observations are subject to 
error may be handled in (a) exactly 
the same way that I have treated the 
straight line with x's and y's sub- 
ject to error [2] or (b) an alterna- 
tive way that leads to a still larger 
supermatrix system. This larger 
system can be set up instantly with 
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virtually no prior arithmetic 
processing. Some awkwardness may 
arise in actual computation, however, 
since the design matrix itself 
includes unknown parameters! 

To work out the required super - 
matrix pattern, I have made use of 
what I call "normal identities" [6]. 
These identities, derived from the 
observation equations in a simple 
systematic manner, are reducible to 
normal equations when the appro- 
priate error -affected aggregates are 
set equal to zero. Since not all of 
the error- affected aggregates in the 
identities can reasonably be assumed 
to vanish, however, we are left with 
more unknowns than equations and 
accordingly have to make additional 
assumptions to connect the unannihil- 
ated aggregates. In any event, the 
suppression and interconnection of 
aggregates are not matters of 
arbitrary choice; for the object is 
to obtain by the supermatrix method 
the same result that is given by the 
relevant normal equations. From a 
scrutiny of normal identities, we 
learr how to treat error aggregates 
for the derivation of the correct 
normal equations; and these normal 
equations have to be examined in turn 
for clues to their "explosion" into 
supermatrix equivalents. 

For simplicity of exposition, I 
consider a function of the form 
y = a + bx + cz, where a, b, and c 

are the unknown parameters and where 
the observed values of y, x, and z 
are subject to error. Thus, I really 
start with equations (identities) of 
the form 

yi +s = a + bx + bti + cz + cu. 
(i = 1, ..., n), where bti and 

cui represent unknown error terms 

that are to be "purged" from the 
observations. I call attention 
to the appearance of b and c as 
separate unknowns in the subvector d 
and also in combination with the 
error terms ti and u., respectively, 

in the subvector r. 

In addition to a block of zeros 
(3n + 3, 3) in the "northwest" corner 
of the design matrix, I obtain these 
packages of elements for the super - 
matrix system: 



Q 

[p = 

xl... zl... 

1 1 1 1 

. , 

[a b c bt1... 

f1 

-si...] , and 

0... 

cui... 

Dots indicate an extension to n terms. 
The symbols k and m appearing in Q 
represent constants to which values 
may be assigned according to assump- 
tions desired with regard to rela- 
tive variances. Thus, having only 
four normal equations but three 
parameters, a, b, and c, and three 
unknown and nonvanishing error 
aggregates, Isy, b2tx, and c'uz, I 
interconnect the sums (which really 
represent variances) in this way: 

= kîtx = mìuz. Notice that the 
terms kxi and,mzi are the only ones 

in the design supermatrix inviting or 
requiring any prior computation. 

Two Iterative Cases 

In my first example of sequen- 
tial approximation, I want to esti- 
mate the parameters of a straight 
line, but I choose to guess ini- 
tially at the least -squares y's 
corresponding to the given I 
could also introduce a second or 
third guess if I choose to do so; 
the supermatrix system is not over- 
taxed thereby. What is the super - 
matrix setup that assures "closure," 
that makes up for my bad guesses and 
yields the correct least- squares 
estimates of the parameters anyway? 

For simplicity, I assume only 
one guessing round. I set up the 
supermatrix system for the observa- 
tions yi = á + bxi + ei (i = 1, ..., 
n) in this manner: 
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Q = x2 x3 ... 
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x 
1 

x1 

x2 

1 

1 1 
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x3 
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= [ a' a" b' b" e 
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e 
1 

e 
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e 
2 

. . ] 
0 0 yieiy2e2.... 

Here the y 
i 

represent guesses; and 

the = - yi represent not only 

a set of error terms in supervector g 
but also a set of residual ordinates 
to be included in the supervector h 
for the assurance of "closure "! The 

errors, ei , are actually known in 

this case. The observed yi do 

enter as such into h. The increments 
a" and b" are readily computable, 
together with the a' and b' corres- 
ponding to the guessing round, in a 
single pass. 

A more striking pattern may be 
obtained by a rearrangement of terms 
in the design supermatrix and in the 
two supervectors,as in Figure 1. 



1 

Notice that the leftmost expression is 
a "supermatrix of supermatrices," 
replicating the F required for classi- 
cal unweighted least squares. This 
form is of interest for the next 
example and for our brief remarks on 
multi- equation models. 

My second example shows the 
instant supermatrix setup for "step- 
wise" regression, a concept due to 
Goldberger and others [7], [8]. A 
linear relationship is estimated 
progressively for one set of error - 
affected y's from two or more sets of 
x's. The procedure is usually pre- 
sented for only two sets of x's but 
additional sets can be accommodated 
easily within the supermatrix frame- 
work. 

For two steps, the supermatrix 
system appears as in Figure 2. 

1 

Fig. 1 
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Here, the yi are observed ordinates 

and the ei are residuals -- the 

differences between the observed 
ordinates and the computed estimates 
derived from the first regression 
step. The second step involves, in 
effect, the regression of first 
residual ordinates on the xi, a second 

set of observations. Since the ei 

are na1 known in advance in this case 
(i.e., they result from computation, 
not from guessing), the solution of 
the supermatrix system cannot be 
accomplished in one pass. 

Multi- equation Models 

More ambitious applications of 
instant supermatrix design are sug- 
gested by a glance at texts exhibit- 
ing: the generalized least- squares 
method of Aitken, the three -stage 
approach to least- squares estimation 
of Zellner and Theil, and the dis- 
crete -time linear engineering formu- 
lations that accommodate "transitions" 
with "noise" from an initial state to 
subsequent ones [9], [7], [8]. In 
these instances, which involve the 
simultaneous estimation of All the 
parameters in a multi- equation model, 
the supermatrix setup is introducible 
in the last phases. The column of 
disturbances is absorbed into the 
supermatrix equation Fg = h. The 
elements of F and h would commonly 
have undergone substantial processing 
rather than represent raw data. 

The two examples discussed in 
the preceding section also suggest 
analogues in which multiple equations 
are treated simultaneously. In these 
analogues, the errors arising in the 
first round or step are not intro - 
ducible as data in successive ones. 

Another possible application of 
the supermatrix approach is to in- 
stances in which a full linear system 
is to be estimated from observations 
made on fragmentary linear "shards." 
All the yi may, for example, repre- 

sent intelligence quotients or per- 
formance scores of a given kind. 
Associated with 'a subset of the yi 

are ratings in one or more "predic- 
tive" tests; associated with other 
subsets of y (they may differ in 
number of elements) are ratings in 
still other tests or in various 
combinations of tests. A supermatrix 
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system can be designed immediately for 
the derivation of the single least - 
squares equation accommodating all 
of the data simultaneously. This 
equation may be useful in its own 
right or for comparison with the re- 
gression estimates corresponding to yi 

subsets. 

Finally, it appears feasible to 
estimate by supermatrix methods the 
unknowns of a multi -equation model 
that consists of (a) accounting 
identities presumed to be exact and 
(b) inexact regression relationships. 
The latter equations may, of course, 
include highly processed "observa- 
tions." They may express each of 
several endogenous variables in terms 
of exogenous variables, other endoge- 
nous variables, or both [10]. 
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POSTSCRIPT 

Since it is my nature to abhor a 
vacuum, I shall use some of the 
abundant space that remains on this 
page for a few additional remarks on 
sequential estimation. 

First, the example I used for 
stepwise regression was deliberately 
patterned on the example preceding it 
and hence may not at first resemble 
the illustrations usually given. The 
supermatrix approach is adaptable, 
of course, to instances in which the 
second set of observed independent 
variables does not, say, include a 
column of l's. 

I wish to point out also that the 
classical cases of least- squares 
adjustment may readily be restated to 
involve sequential procedures. 
Indeed, the example that starts with 
a guess suggests one of the many 
routes that might be taken toward en- 
largement of the standard design 
supermatrices without alteration of 
the final results. 

Another route is suggested by a 
theorem published by Jacobi in 1841 
(it is shown in Whittaker and 
Robinson, Calculus of Observations). 
This theorem, which may be trans- 
lated into supermatrix form at once, 
says that the unweighted least -squares 
straight line is equivalent to a 
certain weighted average of the nC2 

lines derivable from n given values of 
x and y. 
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Still another way is to introduce 
pairs of mathematically redundant unit 
submatrices into the design super - 
matrix for the unweighted case. These 
diagonal matrices are like "idlers" 
or "gears." The first pair would 
link the residuals to a set of 
Lagrangian coefficients; the second 
pair would link these coefficients to 
another set of multipliers; and so on. 

The weighted case is more in- 
teresting. Here, too, pairs of extra 
diagonal matrices may be inserted 
into the design supermatrix, one 
diagonal showing the weights and the 
other showing l's. If two or more 
tiers are introduced, the weights 
included in each may be raised to a 
fractional power; but the introduc- 
tion of tiers must cease when the sum 
of the fractional powers reaches 
unity. 

I conclude with the comment that 
an unweighted least- squares system may 
also be translated into a larger 
weighted one in which Q does 
represent the transpose of P. In this 
setup, a tier containing a compensa- 
tory matrix of pseudo -weights and a 
diagonal unit matrix is included in 
the design supermatrix. The matrix 
of pseudo -weights, however, is not 
diagonal and not unique, and it 
requires some computation. 


